184 research outputs found

    Experimental characterization of anomalous strong scattering of mm-waves in TEXTOR plasmas with rotating islands

    Get PDF
    Anomalous scattering of high power millimetre waves from gyrotrons at 140 and 110 GHz is investigated for plasma with rotating islands at TEXTOR. The magnetic field and plasma density influence the spectral content of the scattered waves and their power levels significantly. Anomalous strong scattering occurs in two density regimes, one at low densities and one at high densities, that also depend on the magnetic field. The two regimes are separated by a quiescent regime without anomalous scattering. Investigations suggest that scattering in the high-density regime is generated at the low-field side intersection of the gyrotron beam and the island position. The transition from the quiescent regime to the high-density regime occurs when the gyrotron frequency is twice the upper hybrid frequency at this position. There is some evidence that the scattering in the low-density regime is generated near the plasma centre. Under this assumption all the observed scattering is generated when the gyrotron frequency is near or below twice the upper hybrid frequency

    Influence of plasma turbulence on microwave propagation

    Get PDF
    It is not fully understood how electromagnetic waves propagate through plasma density fluctuations when the size of the fluctuations is comparable with the wavelength of the incident radiation. In this paper, the perturbing effect of a turbulent plasma density layer on a traversing microwave beam is simulated with full-wave simulations. The deterioration of the microwave beam is calculated as a function of the characteristic turbulence structure size, the turbulence amplitude, the depth of the interaction zone and the size of the waist of the incident beam. The maximum scattering is observed for a structure size on the order of half the vacuum wavelength. The scattering and beam broadening was found to increase linearly with the depth of the turbulence layer and quadratically with the fluctuation strength. Consequences for experiments and 3D effects are considered.Comment: 16 pages, 13 figures. This is an author-created, un-copyedited version of an article submitted for publication in Plasma Physics and Controlled Fusion. IoP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Feasibility study for a correlation electron cyclotron emission turbulence diagnostic based on nonlinear gyrokinetic simulations

    Get PDF
    This paper describes the use of nonlinear gyrokinetic simulations to assess the feasibility of a new correlation electron cyclotron emission (CECE) diagnostic that has been proposed for the Alcator C-Mod tokamak (Marmar et al 2009 Nucl. Fusion 49 104014). This work is based on a series of simulations performed with the GYRO code (Candy and Waltz 2003 J. Comput. Phys. 186 545). The simulations are used to predict ranges of fluctuation level, peak poloidal wavenumber and radial correlation length of electron temperature fluctuations in the core of the plasma. The impact of antenna pattern and poloidal viewing location on measurable turbulence characteristics is addressed using synthetic diagnostics. An upper limit on the CECE sample volume size is determined. The modeling results show that a CECE diagnostic capable of measuring transport-relevant, long-wavelength (k[subscript θ]ρ[subscript s] < 0.5) electron temperature fluctuations is feasible at Alcator C-Mod.United States. Dept. of Energy (DE-FC02-C99ER54512-CMOD

    Diagnostics development for quasi-steady-state operation of the Wendelstein 7-X stellarator (invited)

    Get PDF
    The critical issues in the development of diagnostics, which need to work robust and reliable under quasi-steady state conditions for the discharge durations of 30 min and which cannot be maintained throughout the one week duration of each operation phase of the Wendelstein 7-X stellarator, are being discussed

    Populations of Radial Glial Cells Respond Differently to Reelin and Neuregulin1 in a Ferret Model of Cortical Dysplasia

    Get PDF
    Radial glial cells play an essential role during corticogenesis through their function as neural precursors and guides of neuronal migration. Both reelin and neuregulin1 (NRG1) maintain the radial glial scaffold; they also induce expression of Brain Lipid Binding Protein (BLBP), a well known marker of radial glia. Although radial glia in normal ferrets express both vimentin and BLBP, this coexpression diverges at P3; vimentin is expressed in the radial glial processes, while BLBP appears in cells detached from the ventricular zone. Our lab developed a model of cortical dysplasia in the ferret, resulting in impaired migration of neurons into the cortical plate and disordered radial glia. This occurs after exposure to the antimitotic methylazoxymethanol (MAM) on the 24th day of development (E24). Ferrets treated with MAM on E24 result in an overall decrease of BLBP expression; radial glia that continue to express BLBP, however, show only mild disruption compared with the strongly disrupted vimentin expressing radial glia. When E24 MAM-treated organotypic slices are exposed to reelin or NRG1, the severely disrupted vimentin+ radial glial processes are repaired but the slightly disordered BLBP+ processes are not. The realignment of vimentin+ processes was linked with an increase of their BLBP expression. BLBP expressing radial glia are distinguished by being both less affected by MAM treatment and by attempts at repair. We further investigated the effects induced by reelin and found that signaling was mediated via VLDLR/Dab1/Pi3K activation while NRG1 signaling was mediated via erbB3/erbB4/Pi3K. We then tested whether radial glial repair correlated with improved neuronal migration. Repairing the radial glial scaffold is not sufficient to restore neuronal migration; although reelin improves migration of neurons toward the cortical plate signaling through ApoER2/Dab1/PI3K activation, NRG1 does not

    Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model

    Get PDF
    Neural tube defects (NTDs) are severe congenital abnormalities, caused by failed closure of neural tube during early embryonic development. Periconceptional folic acid (FA) supplementation greatly reduces the risk of NTDs. However, the molecular mechanisms behind NTDs and the preventive role of FA remain unclear. Here, we use human induced pluripotent stem cells (iPSCs) derived from fetuses with spina bifida aperta (SBA) to study the pathophysiology of NTDs and explore the effects of FA exposure. We report that FA exposure in SBA model is necessary for the proper formation and maturation of neural tube structures and robust differentiation of mesodermal derivatives. Additionally, we show that the folate antagonist methotrexate dramatically affects the formation of neural tube structures and FA partially reverts this aberrant phenotype. In conclusion, we present a novel model for human NTDs and provide evidence that it is a powerful tool to investigate the molecular mechanisms underlying NTDs, test drugs for therapeutic approaches
    corecore